In [1]:
    
%matplotlib inline
from science import *
from scipy.stats import poisson
    
In [2]:
    
x=np.random.poisson(lam=10,size=1000)
    
In [3]:
    
def lnprior(mu):
    if 0<=mu<=100:
        return 0.0
    return -np.inf
    
In [4]:
    
def lnlike(data,mu):
    return log(mu)*sum(data)-mu*len(data)
    
In [5]:
    
model=MCMCModel2(x,lnprior,lnlike,
                mu=Uniform(0,100))
    
In [6]:
    
model.run_mcmc(500)
model.plot_chains()
    
    
    
    
In [7]:
    
model.plot_distributions()
    
    
In [21]:
    
x=np.random.poisson(lam=10,size=1)
print x
    
    
In [22]:
    
model=MCMCModel2(x,lnprior,lnlike,
                mu=Uniform(0,100))
    
In [23]:
    
model.run_mcmc(500)
model.plot_chains()
    
    
    
    
In [24]:
    
model.plot_distributions()
    
    
In [ ]: